DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, in addition to the distilled variations varying from 1.5 to 70 billion criteria to construct, experiment, and responsibly scale your generative AI concepts on AWS.
In this post, we show how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to release the distilled versions of the models also.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that uses support finding out to enhance reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base foundation. An essential identifying function is its support knowing (RL) action, which was used to refine the design's actions beyond the standard pre-training and fine-tuning process. By integrating RL, DeepSeek-R1 can adjust more successfully to user feedback and objectives, ultimately enhancing both significance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) technique, indicating it's equipped to break down complicated questions and reason through them in a detailed way. This guided reasoning procedure allows the design to produce more precise, transparent, and detailed responses. This model integrates RL-based fine-tuning with CoT capabilities, aiming to create structured actions while concentrating on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has captured the industry's attention as a flexible text-generation design that can be incorporated into different workflows such as representatives, rational thinking and data analysis jobs.
DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture allows activation of 37 billion parameters, allowing effective inference by routing queries to the most appropriate specialist "clusters." This approach allows the design to concentrate on various issue domains while maintaining overall efficiency. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the thinking capabilities of the main R1 model to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, more effective models to imitate the behavior and thinking patterns of the larger DeepSeek-R1 design, using it as a teacher model.
You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend releasing this model with guardrails in location. In this blog, we will utilize Amazon Bedrock Guardrails to introduce safeguards, avoid harmful content, and assess designs against key security criteria. At the time of writing this blog site, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop numerous guardrails tailored to various use cases and apply them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls throughout your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 design, you require access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limitation boost, produce a limitation boost demand and connect to your account team.
Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) consents to use Amazon Bedrock Guardrails. For instructions, see Establish authorizations to use guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails allows you to introduce safeguards, prevent hazardous material, and examine designs against essential safety requirements. You can implement precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to examine user inputs and design responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.
The basic flow involves the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for reasoning. After getting the model's output, another guardrail check is used. If the output passes this final check, it's returned as the outcome. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following areas demonstrate reasoning utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:
1. On the Amazon Bedrock console, choose Model brochure under Foundation designs in the navigation pane.
At the time of composing this post, you can use the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a supplier and choose the DeepSeek-R1 model.
The design detail page provides vital details about the model's abilities, rates structure, and implementation standards. You can discover detailed usage guidelines, including sample API calls and code snippets for integration. The model supports various text generation jobs, consisting of content development, code generation, and question answering, using its support learning optimization and CoT thinking abilities.
The page also includes release options and licensing details to help you get started with DeepSeek-R1 in your applications.
3. To start using DeepSeek-R1, choose Deploy.
You will be triggered to set up the release details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters).
5. For Number of instances, get in a variety of instances (in between 1-100).
6. For example type, pick your instance type. For optimal performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised.
Optionally, you can configure sophisticated security and facilities settings, consisting of virtual private cloud (VPC) networking, service role authorizations, and encryption settings. For a lot of utilize cases, the default settings will work well. However, for production deployments, you might wish to evaluate these settings to align with your company's security and compliance requirements.
7. Choose Deploy to start using the model.
When the deployment is total, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock play area.
8. Choose Open in play area to access an interactive user interface where you can experiment with various triggers and adjust model parameters like temperature and optimum length.
When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for optimum results. For instance, material for reasoning.
This is an exceptional method to check out the design's thinking and text generation capabilities before integrating it into your applications. The play ground supplies instant feedback, helping you understand how the model reacts to numerous inputs and letting you fine-tune your triggers for .
You can quickly evaluate the design in the playground through the UI. However, to invoke the released model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run inference utilizing guardrails with the deployed DeepSeek-R1 endpoint
The following code example demonstrates how to perform reasoning using a deployed DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually produced the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime customer, configures reasoning parameters, and sends a request to produce text based on a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML options that you can deploy with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your data, and deploy them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart uses 2 hassle-free techniques: using the intuitive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both approaches to help you select the technique that finest matches your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be triggered to create a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The design browser shows available models, with details like the service provider name and design abilities.
4. Look for DeepSeek-R1 to view the DeepSeek-R1 model card.
Each model card shows key details, consisting of:
- Model name
- Provider name
- Task category (for instance, Text Generation).
Bedrock Ready badge (if relevant), indicating that this design can be signed up with Amazon Bedrock, enabling you to utilize Amazon Bedrock APIs to conjure up the design
5. Choose the design card to see the model details page.
The design details page includes the following details:
- The design name and supplier details. Deploy button to release the model. About and Notebooks tabs with detailed details
The About tab includes crucial details, such as:
- Model description. - License details.
- Technical specs.
- Usage guidelines
Before you release the design, it's suggested to review the design details and license terms to validate compatibility with your usage case.
6. Choose Deploy to continue with release.
7. For Endpoint name, utilize the immediately created name or develop a customized one.
- For example type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
- For Initial instance count, go into the variety of instances (default: 1). Selecting appropriate circumstances types and counts is important for expense and performance optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time inference is picked by default. This is optimized for sustained traffic and low latency.
- Review all configurations for precision. For this design, we strongly suggest sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
- Choose Deploy to release the design.
The deployment procedure can take several minutes to finish.
When release is complete, your endpoint status will alter to InService. At this moment, the model is ready to accept inference requests through the endpoint. You can monitor the release progress on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the implementation is complete, you can invoke the model utilizing a SageMaker runtime client and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To start with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and forum.batman.gainedge.org make certain you have the necessary AWS permissions and environment setup. The following is a detailed code example that shows how to release and use DeepSeek-R1 for reasoning programmatically. The code for deploying the design is provided in the Github here. You can clone the note pad and run from SageMaker Studio.
You can run extra demands against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail utilizing the Amazon Bedrock console or the API, and execute it as revealed in the following code:
Tidy up
To prevent unwanted charges, complete the steps in this area to clean up your resources.
Delete the Amazon Bedrock Marketplace release
If you released the design utilizing Amazon Bedrock Marketplace, complete the following steps:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace releases. - In the Managed implementations section, locate the endpoint you want to delete.
- Select the endpoint, and on the Actions menu, pick Delete.
- Verify the endpoint details to make certain you're erasing the appropriate release: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and release the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting begun with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business develop innovative solutions utilizing AWS services and accelerated compute. Currently, he is focused on establishing techniques for fine-tuning and enhancing the inference efficiency of large language designs. In his spare time, Vivek delights in treking, seeing movies, hb9lc.org and trying various cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads item, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about developing services that assist customers accelerate their AI journey and unlock service value.