DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations varying from 1.5 to 70 billion specifications to build, experiment, and responsibly scale your generative AI concepts on AWS.
In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to deploy the distilled variations of the models too.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language model (LLM) developed by DeepSeek AI that uses reinforcement learning to improve thinking capabilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A crucial identifying feature is its reinforcement learning (RL) step, which was used to improve the model's responses beyond the basic pre-training and tweak procedure. By including RL, DeepSeek-R1 can adapt more effectively to user feedback and objectives, ultimately improving both relevance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) technique, implying it's equipped to break down complicated queries and reason through them in a detailed way. This directed reasoning procedure enables the design to produce more precise, transparent, and detailed answers. This model integrates RL-based fine-tuning with CoT abilities, aiming to generate structured actions while focusing on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has actually captured the market's attention as a flexible text-generation model that can be integrated into numerous workflows such as representatives, rational thinking and information interpretation tasks.
DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture enables activation of 37 billion specifications, making it possible for efficient inference by routing inquiries to the most pertinent expert "clusters." This method permits the design to concentrate on various problem domains while maintaining total performance. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to deploy the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the reasoning abilities of the main R1 design to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, more effective designs to imitate the habits and reasoning patterns of the larger DeepSeek-R1 model, utilizing it as an instructor model.
You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest deploying this model with guardrails in location. In this blog site, we will utilize Amazon Bedrock Guardrails to introduce safeguards, prevent hazardous content, and assess models against crucial safety requirements. At the time of writing this blog site, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop numerous guardrails tailored to various use cases and use them to the DeepSeek-R1 design, improving user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To request a limit increase, develop a limit increase demand and reach out to your account team.
Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For guidelines, see Set up consents to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails allows you to introduce safeguards, avoid hazardous content, and examine models against crucial safety requirements. You can execute precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to examine user inputs and design responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.
The basic flow involves the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After receiving the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it happened at the input or output phase. The examples showcased in the following areas show inference utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, wiki.vst.hs-furtwangen.de complete the following actions:
1. On the Amazon Bedrock console, choose Model catalog under Foundation models in the navigation pane.
At the time of writing this post, you can utilize the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a company and select the DeepSeek-R1 design.
The design detail page supplies important details about the design's capabilities, rates structure, and execution standards. You can discover detailed usage directions, including sample API calls and code bits for combination. The design supports numerous text generation jobs, consisting of content creation, code generation, and concern answering, utilizing its support learning optimization and CoT reasoning abilities.
The page also consists of release options and licensing details to help you start with DeepSeek-R1 in your applications.
3. To start utilizing DeepSeek-R1, choose Deploy.
You will be prompted to set up the deployment details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters).
5. For Number of instances, enter a number of circumstances (in between 1-100).
6. For Instance type, select your circumstances type. For ideal with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested.
Optionally, you can set up innovative security and facilities settings, including virtual personal cloud (VPC) networking, service function consents, and file encryption settings. For a lot of utilize cases, the default settings will work well. However, for production deployments, you may want to examine these settings to align with your company's security and compliance requirements.
7. Choose Deploy to start utilizing the design.
When the implementation is total, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock playground.
8. Choose Open in play ground to access an interactive user interface where you can experiment with different prompts and change design specifications like temperature level and maximum length.
When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimal outcomes. For example, material for reasoning.
This is an excellent way to check out the model's thinking and text generation capabilities before incorporating it into your applications. The playground offers immediate feedback, helping you comprehend how the model reacts to various inputs and letting you tweak your prompts for optimal results.
You can rapidly check the design in the play area through the UI. However, to invoke the deployed model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run reasoning using guardrails with the deployed DeepSeek-R1 endpoint
The following code example demonstrates how to carry out inference utilizing a released DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime client, configures reasoning criteria, and sends a request to produce text based on a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML options that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and deploy them into production using either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart offers two convenient approaches: utilizing the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both techniques to assist you choose the method that best suits your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to release DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
2. First-time users will be triggered to create a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The design internet browser displays available models, with details like the service provider name and design capabilities.
4. Look for DeepSeek-R1 to view the DeepSeek-R1 model card.
Each model card shows key details, including:
- Model name
- Provider name
- Task classification (for example, Text Generation).
Bedrock Ready badge (if suitable), indicating that this design can be registered with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to invoke the model
5. Choose the design card to view the design details page.
The design details page consists of the following details:
- The design name and provider details. Deploy button to release the design. About and Notebooks tabs with detailed details
The About tab includes essential details, such as:
- Model description. - License details.
- Technical requirements.
- Usage standards
Before you release the design, it's suggested to examine the model details and license terms to validate compatibility with your use case.
6. Choose Deploy to continue with release.
7. For Endpoint name, utilize the instantly created name or create a custom-made one.
- For Instance type ¸ choose an instance type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, get in the variety of instances (default: 1). Selecting appropriate instance types and counts is important for cost and efficiency optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time inference is selected by default. This is enhanced for sustained traffic and low latency.
- Review all configurations for precision. For this model, we strongly suggest sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
- Choose Deploy to release the model.
The deployment procedure can take numerous minutes to complete.
When implementation is complete, your endpoint status will change to InService. At this point, the model is prepared to accept inference requests through the endpoint. You can keep track of the deployment progress on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the release is complete, you can invoke the model utilizing a SageMaker runtime customer and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To get begun with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the needed AWS approvals and environment setup. The following is a detailed code example that shows how to deploy and utilize DeepSeek-R1 for reasoning programmatically. The code for releasing the design is provided in the Github here. You can clone the note pad and run from SageMaker Studio.
You can run extra demands against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:
Clean up
To avoid undesirable charges, complete the steps in this area to clean up your resources.
Delete the Amazon Bedrock Marketplace implementation
If you released the design using Amazon Bedrock Marketplace, total the following actions:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace implementations. - In the Managed releases area, find the endpoint you desire to erase.
- Select the endpoint, and on the Actions menu, choose Delete.
- Verify the endpoint details to make certain you're deleting the correct release: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you released will sustain expenses if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and release the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business develop ingenious services using AWS services and accelerated compute. Currently, he is focused on establishing methods for fine-tuning and enhancing the reasoning performance of large language designs. In his complimentary time, Vivek enjoys treking, watching films, and attempting different cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about constructing services that help consumers accelerate their AI journey and unlock organization value.