Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • C cubixdesigns
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 4
    • Issues 4
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • Clint Ride
  • cubixdesigns
  • Issues
  • #4

Closed
Open
Created Mar 04, 2025 by Clint Ride@clintride3907Owner

DeepSeek Open-Sources DeepSeek-R1 LLM with Performance Comparable To OpenAI's O1 Model


DeepSeek open-sourced DeepSeek-R1, an LLM fine-tuned with support learning (RL) to enhance thinking capability. DeepSeek-R1 attains outcomes on par with OpenAI's o1 model on a number of benchmarks, consisting of MATH-500 and SWE-bench.

DeepSeek-R1 is based upon DeepSeek-V3, a mix of experts (MoE) model recently open-sourced by DeepSeek. This base model is fine-tuned using Group Relative Policy Optimization (GRPO), a reasoning-oriented version of RL. The research study team likewise performed knowledge distillation from DeepSeek-R1 to open-source Qwen and Llama models and released a number of versions of each; these designs surpass bigger models, including GPT-4, on math and coding benchmarks.

[DeepSeek-R1 is] the primary step towards enhancing language design reasoning abilities utilizing pure reinforcement learning (RL). Our goal is to check out the capacity of LLMs to establish thinking abilities with no monitored data, concentrating on their self-evolution through a pure RL process...DeepSeek-R1 ... excels in a large range of tasks, consisting of creative writing, general question answering, editing, summarization, and more. Additionally, DeepSeek-R1 shows outstanding performance on jobs needing long-context understanding, significantly exceeding DeepSeek-V3 on long-context benchmarks.

To establish the design, DeepSeek started with DeepSeek-V3 as a base. They first attempted fine-tuning it just with RL, and with no monitored fine-tuning (SFT), producing a model called DeepSeek-R1-Zero, which they have likewise released. This model displays strong thinking efficiency, but" effective thinking behaviors, it deals with a number of problems. For example, DeepSeek-R1-Zero battles with difficulties like poor readability and language blending."

To resolve this, the group utilized a short stage of SFT to prevent the "cold start" issue of RL. They gathered numerous thousand examples of chain-of-thought reasoning to use in SFT of DeepSeek-V3 before running RL. After the RL procedure assembled, they then gathered more SFT data using rejection sampling, resulting in a dataset of 800k samples. This dataset was utilized for further fine-tuning and to produce the distilled designs from Llama and Qwen.

DeepSeek assessed their model on a variety of thinking, math, and coding standards and compared it to other models, consisting of Claude-3.5- Sonnet, GPT-4o, and o1. DeepSeek-R1 surpassed all of them on numerous of the criteria, including AIME 2024 and MATH-500.

DeepSeek-R1 Performance. Image Source: DeepSeek-R1 Technical Report

Within a couple of days of its release, the LMArena revealed that DeepSeek-R1 was ranked # 3 overall in the arena and # 1 in coding and mathematics. It was also connected for # 1 with o1 in "Hard Prompt with Style Control" category.

Django framework co-creator Simon Willison discussed his try outs one of the DeepSeek distilled Llama models on his blog:

Each reaction starts with a ... pseudo-XML tag containing the chain of thought utilized to assist create the reaction. [Given the timely] "a joke about a pelican and a walrus who run a tea room together" ... It then believed for 20 paragraphs before outputting the joke! ... [T] he joke is awful. But the process of arriving was such a fascinating insight into how these brand-new designs work.

Andrew Ng's newsletter The Batch blogged about DeepSeek-R1:

DeepSeek is rapidly emerging as a strong contractor wiki.asexuality.org of open designs. Not only are these designs fantastic entertainers, but their license permits use of their outputs for distillation, potentially pushing forward the cutting-edge for language designs (and models) of all sizes.

The DeepSeek-R1 models are available on HuggingFace.

About the Author

Anthony Alford

Rate this Article

This material remains in the AI, ML & Data Engineering subject

Related Topics:

- AI, ML & Data Engineering

  • Generative AI
  • Large language designs

    - Related Editorial

    Related Sponsored Content

    - [eBook] Getting Going with Azure Kubernetes Service

    Related Sponsor

    Free services for AI apps. Are you all set to try out innovative technologies? You can begin constructing smart apps with complimentary Azure app, data, and AI services to reduce in advance expenses. Discover more.

    How could we improve? Take the InfoQ reader survey

    Each year, we look for feedback from our readers to assist us improve InfoQ. Would you mind costs 2 minutes to share your feedback in our short study? Your feedback will straight help us constantly evolve how we support you. The InfoQ Team Take the survey

    Related Content

    The InfoQ Newsletter

    A round-up of recently's content on InfoQ sent every Tuesday. Join a community of over 250,000 senior designers.
Assignee
Assign to
Time tracking