DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled versions ranging from 1.5 to 70 billion parameters to construct, experiment, and properly scale your generative AI ideas on AWS.
In this post, we show how to get begun with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to deploy the distilled versions of the designs as well.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language design (LLM) established by DeepSeek AI that uses reinforcement discovering to improve reasoning capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A key differentiating feature is its support learning (RL) step, which was used to refine the model's reactions beyond the standard pre-training and fine-tuning process. By integrating RL, DeepSeek-R1 can adjust better to user feedback and objectives, ultimately enhancing both importance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) approach, meaning it's geared up to break down complex questions and reason through them in a detailed manner. This guided reasoning process enables the design to produce more accurate, transparent, and detailed responses. This design integrates RL-based fine-tuning with CoT capabilities, aiming to generate structured actions while focusing on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has recorded the market's attention as a flexible text-generation design that can be integrated into different workflows such as agents, logical reasoning and data interpretation jobs.
DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture allows activation of 37 billion criteria, enabling effective inference by routing questions to the most relevant specialist "clusters." This approach enables the model to concentrate on various issue domains while maintaining total performance. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge instance to deploy the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the thinking abilities of the main R1 model to more effective architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more effective models to simulate the behavior and reasoning patterns of the bigger DeepSeek-R1 design, utilizing it as a teacher model.
You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend releasing this model with guardrails in location. In this blog site, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid damaging content, and evaluate designs against crucial safety requirements. At the time of composing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create numerous guardrails tailored to different use cases and use them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limitation increase, produce a limit boost demand and reach out to your account team.
Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) authorizations to utilize Amazon Bedrock Guardrails. For instructions, see Set up approvals to utilize guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails enables you to present safeguards, avoid damaging content, and examine models against key safety requirements. You can implement precaution for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to assess user inputs and model reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The general flow includes the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After receiving the model's output, another guardrail check is applied. If the output passes this final check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following areas demonstrate inference using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, choose Model brochure under Foundation models in the navigation pane.
At the time of composing this post, you can utilize the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a company and choose the DeepSeek-R1 model.
The model detail page provides important details about the model's capabilities, prices structure, and implementation standards. You can discover detailed use directions, consisting of sample API calls and code bits for integration. The model supports various text generation tasks, including content creation, code generation, and question answering, utilizing its support learning optimization and CoT thinking capabilities.
The page likewise consists of implementation choices and licensing details to help you get begun with DeepSeek-R1 in your applications.
3. To begin utilizing DeepSeek-R1, pick Deploy.
You will be triggered to set up the release details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters).
5. For Variety of instances, go into a variety of circumstances (between 1-100).
6. For example type, choose your circumstances type. For optimal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended.
Optionally, you can set up sophisticated security and facilities settings, including virtual personal cloud (VPC) networking, service function consents, and encryption settings. For most use cases, the default settings will work well. However, for production deployments, you might wish to review these settings to line up with your organization's security and compliance requirements.
7. Choose Deploy to begin utilizing the model.
When the implementation is complete, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock playground.
8. Choose Open in play area to access an interactive interface where you can try out different prompts and change design specifications like temperature and optimum length.
When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimal outcomes. For instance, content for inference.
This is an exceptional method to check out the model's thinking and text generation capabilities before incorporating it into your applications. The playground provides instant feedback, helping you comprehend how the design reacts to various inputs and letting you fine-tune your triggers for optimal outcomes.
You can rapidly test the model in the playground through the UI. However, to conjure up the deployed model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run reasoning utilizing guardrails with the deployed DeepSeek-R1 endpoint
The following code example shows how to carry out inference using a deployed DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have actually developed the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime client, configures reasoning criteria, and sends out a demand to produce text based upon a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML options that you can deploy with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and deploy them into production using either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart offers two hassle-free approaches: using the user-friendly SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both approaches to help you select the technique that best matches your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to release DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be triggered to create a domain.
3. On the SageMaker Studio console, pick JumpStart in the navigation pane.
The design web browser shows available designs, with details like the supplier name and garagesale.es design abilities.
4. Search for DeepSeek-R1 to view the DeepSeek-R1 model card.
Each design card reveals key details, consisting of:
- Model name
- Provider name
- Task category (for example, Text Generation).
Bedrock Ready badge (if suitable), indicating that this model can be signed up with Amazon Bedrock, allowing you to utilize Amazon Bedrock APIs to invoke the model
5. Choose the model card to see the design details page.
The design details page consists of the following details:
- The design name and supplier details. Deploy button to release the model. About and Notebooks tabs with detailed details
The About tab consists of essential details, such as:
- Model description. - License details.
- Technical specifications.
- Usage guidelines
Before you deploy the model, it's advised to examine the model details and license terms to confirm compatibility with your usage case.
6. Choose Deploy to proceed with implementation.
7. For Endpoint name, use the instantly produced name or create a customized one.
- For example type ¸ pick an instance type (default: ml.p5e.48 xlarge).
- For Initial instance count, get in the variety of circumstances (default: 1). Selecting proper circumstances types and counts is essential for cost and performance optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time inference is picked by default. This is optimized for sustained traffic and low latency.
- Review all configurations for precision. For this design, we strongly recommend adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
- Choose Deploy to deploy the model.
The release process can take a number of minutes to finish.
When release is complete, your endpoint status will alter to InService. At this moment, the design is all set to accept inference demands through the endpoint. You can keep track of the release progress on the SageMaker console Endpoints page, which will show appropriate metrics and status details. When the implementation is total, you can invoke the model using a SageMaker runtime customer and integrate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To get going with DeepSeek-R1 using the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the required AWS permissions and environment setup. The following is a detailed code example that shows how to deploy and use DeepSeek-R1 for inference programmatically. The code for releasing the design is supplied in the Github here. You can clone the notebook and run from SageMaker Studio.
You can run additional requests against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and execute it as shown in the following code:
Clean up
To prevent undesirable charges, complete the steps in this section to tidy up your resources.
Delete the Amazon Bedrock Marketplace release
If you released the model utilizing Amazon Bedrock Marketplace, total the following actions:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace releases. - In the Managed deployments section, locate the endpoint you wish to erase.
- Select the endpoint, and on the Actions menu, pick Delete.
- Verify the endpoint details to make certain you're erasing the appropriate implementation: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you released will sustain expenses if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business construct innovative services using AWS services and sped up compute. Currently, he is concentrated on developing techniques for fine-tuning and enhancing the inference efficiency of big language models. In his leisure time, Vivek enjoys hiking, enjoying motion pictures, and attempting various cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is an Expert Solutions Architect with generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about constructing solutions that assist consumers accelerate their AI journey and unlock organization worth.