Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • C compass-framework
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 11
    • Issues 11
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • Boyce Robles
  • compass-framework
  • Issues
  • #11

Closed
Open
Created Jun 01, 2025 by Boyce Robles@boycerobles49Owner

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, together with the distilled versions varying from 1.5 to 70 billion criteria to build, experiment, and properly scale your generative AI concepts on AWS.

In this post, we show how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to release the distilled versions of the models as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that utilizes support finding out to boost thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A crucial distinguishing function is its reinforcement learning (RL) step, which was utilized to improve the model's responses beyond the basic pre-training and fine-tuning procedure. By integrating RL, DeepSeek-R1 can adjust better to user feedback and objectives, ultimately boosting both importance and clearness. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) method, suggesting it's geared up to break down intricate questions and reason through them in a detailed way. This directed reasoning process permits the design to produce more accurate, transparent, and detailed answers. This design integrates RL-based fine-tuning with CoT abilities, aiming to create structured reactions while concentrating on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has caught the industry's attention as a flexible text-generation model that can be incorporated into numerous workflows such as representatives, sensible thinking and information analysis tasks.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture enables activation of 37 billion specifications, allowing effective reasoning by routing questions to the most relevant professional "clusters." This technique allows the model to concentrate on various issue domains while maintaining general efficiency. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for gratisafhalen.be reasoning. In this post, wiki.whenparked.com we will utilize an ml.p5e.48 to release the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning abilities of the main R1 model to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and it-viking.ch 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more effective models to mimic the habits and reasoning patterns of the larger DeepSeek-R1 model, utilizing it as a teacher design.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend deploying this model with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, hb9lc.org avoid harmful content, and examine designs against essential security criteria. At the time of writing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop several guardrails tailored to different use cases and use them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 design, you require access to an ml.p5e circumstances. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and verify you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To ask for a limitation increase, develop a limit boost demand and connect to your account group.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) authorizations to use Amazon Bedrock Guardrails. For instructions, see Establish approvals to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to present safeguards, prevent damaging content, and evaluate models against crucial security criteria. You can execute safety measures for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to assess user inputs and model actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The general flow involves the following steps: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for inference. After receiving the design's output, another guardrail check is used. If the output passes this final check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it happened at the input or output stage. The examples showcased in the following sections demonstrate inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, forum.batman.gainedge.org emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:

1. On the Amazon Bedrock console, select Model catalog under Foundation designs in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to conjure up the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and select the DeepSeek-R1 model.

The design detail page provides essential details about the model's capabilities, rates structure, and implementation guidelines. You can find detailed use directions, consisting of sample API calls and code snippets for combination. The model supports different text generation jobs, including material production, code generation, and question answering, utilizing its reinforcement discovering optimization and CoT reasoning abilities. The page likewise consists of implementation options and licensing details to help you get going with DeepSeek-R1 in your applications. 3. To begin using DeepSeek-R1, select Deploy.

You will be triggered to set up the release details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of instances, enter a number of circumstances (in between 1-100). 6. For Instance type, choose your circumstances type. For ideal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised. Optionally, you can set up advanced security and infrastructure settings, consisting of virtual personal cloud (VPC) networking, service function authorizations, and encryption settings. For a lot of use cases, the default settings will work well. However, for raovatonline.org production deployments, you may desire to evaluate these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to begin utilizing the model.

When the release is complete, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock playground. 8. Choose Open in play ground to access an interactive user interface where you can explore various prompts and change model specifications like temperature level and maximum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimal outcomes. For instance, material for inference.

This is an excellent method to check out the design's thinking and text generation abilities before incorporating it into your applications. The play area offers instant feedback, helping you understand how the model reacts to different inputs and letting you tweak your prompts for optimum results.

You can quickly evaluate the model in the play ground through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference utilizing guardrails with the deployed DeepSeek-R1 endpoint

The following code example shows how to carry out reasoning using a deployed DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually developed the guardrail, utilize the following code to carry out guardrails. The script initializes the bedrock_runtime client, sets up inference parameters, and sends a request to produce text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML options that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your information, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart uses two practical methods: utilizing the instinctive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both techniques to help you pick the approach that finest fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The model browser displays available designs, with details like the supplier name and design capabilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 design card. Each model card shows essential details, consisting of:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if suitable), suggesting that this model can be signed up with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to conjure up the model

    5. Choose the model card to see the model details page.

    The design details page consists of the following details:

    - The design name and company details. Deploy button to deploy the design. About and Notebooks tabs with detailed details

    The About tab consists of crucial details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage guidelines

    Before you release the design, it's recommended to evaluate the design details and license terms to validate compatibility with your usage case.

    6. Choose Deploy to proceed with release.

    7. For Endpoint name, utilize the automatically created name or produce a custom one.
  1. For example type ¸ select an instance type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, enter the variety of circumstances (default: 1). Selecting proper instance types and counts is crucial for expense and performance optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is enhanced for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this model, we strongly advise sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to release the model.

    The deployment process can take numerous minutes to finish.

    When implementation is complete, your endpoint status will change to InService. At this point, the model is ready to accept reasoning requests through the endpoint. You can keep an eye on the deployment development on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the implementation is complete, you can conjure up the design using a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To get going with DeepSeek-R1 using the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the necessary AWS consents and environment setup. The following is a detailed code example that shows how to deploy and use DeepSeek-R1 for inference programmatically. The code for deploying the model is provided in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and implement it as revealed in the following code:

    Clean up

    To avoid undesirable charges, finish the actions in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you released the model using Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace releases.
  5. In the Managed releases section, find the endpoint you want to erase.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're erasing the correct deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain expenses if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get begun. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting begun with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business build ingenious options utilizing AWS services and sped up compute. Currently, he is focused on developing methods for fine-tuning and enhancing the inference efficiency of big language designs. In his downtime, Vivek delights in treking, enjoying movies, and attempting different cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about developing options that assist clients accelerate their AI journey and wiki.lafabriquedelalogistique.fr unlock business worth.
Assignee
Assign to
Time tracking